Towards scalable deployment optimization
in the Fog using MDPs and Function Approximation

Gabriele Russo Russo

University of Rome Tor Vergata

Data Stream Processing (DSP) m
processing Big Data in real-time (o)
@® source @ operator {o)consumer
M

B
aif @ el

I

I

@ AR, '(
gy ©E=

New trend: moving computation towards
data sources and consumers

Geo-distributed DSP: old and new challenges

» Non negligible network latency
» Heterogeneous computing resources (and usually less powerful. . .)
» Variable infrastructure conditions

7

» Application deployment must be adapted at run-time:

> how many parallel replicas for each operator? (elasticity)
» where to deploy each operator?
» when to change the deployment, incurring overhead?

Operator deployment adaptation

Operator Elasticity

P Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
» Computing infrastructure composed of regions

» Several types of computing resources available (e.g., VMs with
different capacity)

Operator deployment adaptation

Operator Elasticity
P Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
» Computing infrastructure composed of regions

» Several types of computing resources available (e.g., VMs with
different capacity)

Operating costs for a single operator
P> resources cost: depends on amount and type of used resources

P adaptation cost: proportional to performance degradation at each
deployment reconfiguration

» SLA violation: paid whenever the performance (i.e., processing latency)
violates a given threshold

— would like to minimize all of them in the long-term

MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

> System state: current deployment and input data rate
» Actions: possible deployment adaptations

» Each state-action pair (s, a) associated with a cost c(s, a)

v

We search for the optimal policy:

minimize > °o~vc(st,ar) v « discount factor € [0,1)

MDP formulation

v

model the problem as an infinite-horizon Markov Decision Process

System state: current deployment and input data rate

Actions: possible deployment adaptations

Each state-action pair (s, a) associated with a cost c(s, a)
We search for the optimal policy:

minimize > °o~vc(st,ar) v « discount factor € [0,1)

Can be solved by DP, LP, reinforcement learning, ...
Resolution based on the Q function

Traditional algorithms store Q in memory: an entry for each
state-action pair

Scalability

1x10'2
1x10'°
& 1x10®
S
)
1x10°
10000
1 res. types ——
3 res. types ——
_5res. types ——

100 ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9 10
Deployment regions

22 GB of memory to store @ with 5 regions and 3 classes of resources

Does not scale in a Fog scenario (many applications to optimize!)

Function Approximation for MDPs

» ldea: replacing the Q table with a parametric function @(s, a,0)
» Need to store (and compute) only the parameters 0

» Today we focus on Linear Function Approximation:

(A\)(Sa a,0) =, ¢i(s, a)b;
» Defining a good set of features ¢;(s, a) is challenging

» More features = more parameters to compute and store
» A small set of features may prevent the algorithm to converge

Tile Coding

Idea: cover the state space with “tilings”

P adjacent states are aggregated in a single tile
> each state activates a tile (i.e., binary feature)
> fine-grained vs. coarse-grained tilings

» different number of dimensions and shape of tiles

o

a) Irregular b) Log stripes c) Diagonal stripes

Using Tile Coding

First step: homogeneous computing resources

» A binary feature for scaling operations (scale-out, scale-in)
— captures adaptation cost

P> Rectangles-based tilings to group states with
similar parallelism and input rate

P A stripes-based tiling to group states with similar load per replica

/ /
s | 1 / / /

parallelism parallelism

» 3 granularity settings: base, finer, coarser

Results: used memory

Used memory / Tabular

1.2

0.8

0.6

0.4

0.2

Used memory with respect to the tabular case

Tabular —
Tiling =3

Tiling (Finer)
Tiling (Coarser) ===

10

Simulation results: average cost

Cost

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Base scenario, with homogeneous resources

Tabular m— Tiling (Finer)
Tiling =—= Tiling (Coarser)

0.7

0.95 0.97 0.99
Dlscount factor

11

Features for the heterogeneous scenario

» Considering parallelism is not enough any more:
computing resources with different cost and performance

» Would need a N-dimensional tiling:
input rate + amount of resources of each type

» Simpler idea, adding only a third dimension to the current tilings:
parallelism, input rate, type of the less powerful used resource

input
rate I A

parallelism

12

Preliminary results: 3 types of comp. resources

0.35

Tabular s Tiling =

03 ¢]
0.25

0.2 ¢

Cost

0.15 ¢

0.1 ¢

0.05 ¢

0.5 0.7 0.8 09 095 097 0.99
Discount factor

Near-optimal results for v < 0.99, using 2% of the memory

Conclusion

» A MDP-based framework for optimizing deployment in the Fog
» Function Approximation techniques are promising for scalability

Still work to do for better performance:

» Automatic feature engineering (e.g., adaptive tiling)
» Artificial Neural Networks

+ Extend to similar resource allocation problems in the Fog

14

Thanks for your attention!

russo.russo@ing.uniroma2.it

WWW.cCe.uniroma?2.it/~russorusso

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

Data Stream Processing (DSP)

» A computational paradigm for real-time Big Data analysis
» Continuous processing of unbounded sequences: data streams
» Data processed “on the fly"”

\ .
v \\\
(O}
M’

(® source @ operator {o)consumer

MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

> System state: s = (K, \)
kr - = replicas deployed in region r using instances of type 7
A = current input data rate for the operator (discretized)

> Actions:

» add a replica on a resource of type t in region r
P kill one of the active replicas
» do nothing

» Each state-action pair associated with a cost c(s, a):
C(S, a) = WRCresources(57 3) + WACadaptation(57 a) + WSCSLA(57 a)

» We search for the optimal policy 7* : S — A:

minimize Y ;2q7y'c(st, a:) 7 < discount factor € [0,1)

Solving the MDP

<1-| handout:0> An optimal policy can be found by standard
techniques:
linear programming, dynamic programming, reinforcement learning, ...

» Classical DP algorithms (e.g., Value Iteration) rely on Q function:
expected long-term cost of every action in every state

» Computed iteratively until convergence

» Q function stored in a Q table in memory:
an entry for each state-action pair

Trajectory Based Value Iteration

Algorithm 3:Trajectory Based Value Iteration (TBVI) Complexity

Input: MDP, o, L1
Output: 7
1 0 < Initialize arbitrarily
2 while time left do

3 for (s, a) in a trajectory following ¢ do

4 Create Ly samples: s’ ~ Pg,j=1,..., L1

s Q¥ (5,0) & £ T32 Rey, + 7y maxa Q(s), a), O(nLi|A))
6 0 Q+(57 (1,) - Q(87 (L)

7 0« 0+ adg(s,a) O(n)

8 return 7w greedy with respect to)

Fog Computing

A
ﬂ - 3 ﬂ PR
: ¥
[

 —

- e
- e

New trends for Big Data: geo-distributed processing

T
| @i

953

955

FOG \

sy @A

From large data centers in the Cloud to. .. everywhere

Executing DSP applications: placement

How to place the application components
over a computing infrastructure?

Data source ‘\
.

Network latency and resource heterogeneity impact the QoS!

A (centralized) optimization problem

EDRP
Elastic DSP Replication and Placement

>
>

ILP model

Optimizes trade-off between
response time, resource usage, and
reconfiguration cost

Requires full characterization of the
application and the infrastructure

Does not scale!

No foresight

—(

Replication

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, “Optimal operator deployment
and replication for elastic distributed data stream processing”, Concurrency and
Computation: Pract Exper., 2017

DEBS 2015 Grand Challenge application

computeRoutelD

. RabbitMQ

datasource parser filterByCoordinates

metronome @® source @ operator @ sink

countByWindow partialRank globalRank

EDF + Reinforcement learning

2 500 £ 500
£3 00! 25 o0
-4 i So i
58 20011 g 2001
= i e i
5% 100 5% 100§
) 0 ? 0
400 400
o o
gz 300 ¢z 300
85 200 85 200
S E SE
EE 100 && 100
0 0
8o 20 8o 20
ES 16 ES 16
2% w R P S
55 8 35 8
= 0 100 200 300 400 500 600 700 = 0 100 200 300 400 500 600 700
Time (minutes) Time (minutes)
Q-learning Q-learning, with token bucket
g g s
53 23 oo
So @ i
£E S€ 100}
8 8 0
400
2z gz 30
g< 25 200
° °
0
8o 20 o 20
€8 16 £8 16
25 29
g 12 g 12
s T e e T =h T T
E S 8 E 5 8
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (minutes) Time (minutes)

	Appendix

