Towards scalable deployment optimization
in the Fog using MDPs and Function Approximation

Gabriele Russo Russo

University of Rome Tor Vergata




Data Stream Processing (DSP) m
processing Big Data in real-time (o)
@® source @ operator {o)consumer
M

B
aif @ el

I

I

@ AR, '(
gy ©E=

New trend: moving computation towards
data sources and consumers



Geo-distributed DSP: old and new challenges

» Non negligible network latency
» Heterogeneous computing resources (and usually less powerful. . .)
» Variable infrastructure conditions
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» Application deployment must be adapted at run-time:

> how many parallel replicas for each operator? (elasticity)
» where to deploy each operator?
» when to change the deployment, incurring overhead?



Operator deployment adaptation

Operator Elasticity

P Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
» Computing infrastructure composed of regions

» Several types of computing resources available (e.g., VMs with
different capacity)
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Operator Elasticity
P Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
» Computing infrastructure composed of regions

» Several types of computing resources available (e.g., VMs with
different capacity)

Operating costs for a single operator
P> resources cost: depends on amount and type of used resources

P adaptation cost: proportional to performance degradation at each
deployment reconfiguration

» SLA violation: paid whenever the performance (i.e., processing latency)
violates a given threshold

— would like to minimize all of them in the long-term



MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

> System state: current deployment and input data rate
» Actions: possible deployment adaptations

» Each state-action pair (s, a) associated with a cost c(s, a)

v

We search for the optimal policy:

minimize > °o~vc(st,ar) v « discount factor € [0,1)



MDP formulation

v

model the problem as an infinite-horizon Markov Decision Process

System state: current deployment and input data rate

Actions: possible deployment adaptations

Each state-action pair (s, a) associated with a cost c(s, a)
We search for the optimal policy:

minimize > °o~vc(st,ar) v « discount factor € [0,1)

Can be solved by DP, LP, reinforcement learning, ...
Resolution based on the Q function

Traditional algorithms store Q in memory: an entry for each
state-action pair



Scalability
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22 GB of memory to store @ with 5 regions and 3 classes of resources

Does not scale in a Fog scenario (many applications to optimize!)



Function Approximation for MDPs

» ldea: replacing the Q table with a parametric function @(s, a,0)
» Need to store (and compute) only the parameters 0

» Today we focus on Linear Function Approximation:

(A\)(Sa a,0) =, ¢i(s, a)b;
» Defining a good set of features ¢;(s, a) is challenging

» More features = more parameters to compute and store
» A small set of features may prevent the algorithm to converge



Tile Coding

Idea: cover the state space with “tilings”

P adjacent states are aggregated in a single tile
> each state activates a tile (i.e., binary feature)
> fine-grained vs. coarse-grained tilings

» different number of dimensions and shape of tiles

o

a) Irregular b) Log stripes c) Diagonal stripes



Using Tile Coding

First step: homogeneous computing resources

» A binary feature for scaling operations (scale-out, scale-in)
— captures adaptation cost

P> Rectangles-based tilings to group states with
similar parallelism and input rate

P A stripes-based tiling to group states with similar load per replica
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parallelism parallelism

» 3 granularity settings: base, finer, coarser




Results: used memory
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Simulation results: average cost
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Features for the heterogeneous scenario

» Considering parallelism is not enough any more:
computing resources with different cost and performance

» Would need a N-dimensional tiling:
input rate + amount of resources of each type

» Simpler idea, adding only a third dimension to the current tilings:
parallelism, input rate, type of the less powerful used resource

input
rate I A

parallelism
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Preliminary results: 3 types of comp. resources
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Conclusion

» A MDP-based framework for optimizing deployment in the Fog
» Function Approximation techniques are promising for scalability

Still work to do for better performance:

» Automatic feature engineering (e.g., adaptive tiling)
» Artificial Neural Networks

+ Extend to similar resource allocation problems in the Fog
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Thanks for your attention!

russo.russo@ing.uniroma2.it

WWW.cCe.uniroma?2.it/~russorusso
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Data Stream Processing (DSP)

» A computational paradigm for real-time Big Data analysis
» Continuous processing of unbounded sequences: data streams
» Data processed “on the fly"”
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MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

> System state: s = (K, \)
kr - = replicas deployed in region r using instances of type 7
A = current input data rate for the operator (discretized)

> Actions:

» add a replica on a resource of type t in region r
P kill one of the active replicas
» do nothing

» Each state-action pair associated with a cost c(s, a):
C(S, a) = WRCresources(57 3) + WACadaptation(57 a) + WSCSLA(57 a)

» We search for the optimal policy 7* : S — A:

minimize Y ;2q7y'c(st, a:) 7 < discount factor € [0,1)



Solving the MDP

<1-| handout:0> An optimal policy can be found by standard
techniques:
linear programming, dynamic programming, reinforcement learning, ...

» Classical DP algorithms (e.g., Value Iteration) rely on Q function:
expected long-term cost of every action in every state

» Computed iteratively until convergence

» Q function stored in a Q table in memory:
an entry for each state-action pair



Trajectory Based Value Iteration

Algorithm 3:Trajectory Based Value Iteration (TBVI) Complexity

Input: MDP, o, L1
Output: 7
1 0 < Initialize arbitrarily
2 while time left do

3 for (s, a) in a trajectory following ¢ do

4 Create Ly samples: s’ ~ Pg,j=1,..., L1

s Q¥ (5,0) & £ T32 Rey, + 7y maxa Q(s), a), O(nLi|A))
6 0 Q+(57 (1,) - Q(87 (L)

7 0« 0+ adg(s,a) O(n)

8 return 7w greedy with respect to )




Fog Computing
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New trends for Big Data: geo-distributed processing
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From large data centers in the Cloud to. .. everywhere



Executing DSP applications: placement

How to place the application components
over a computing infrastructure?

Data source ‘\
.

Network latency and resource heterogeneity impact the QoS!



A (centralized) optimization problem

EDRP
Elastic DSP Replication and Placement

>
>

ILP model

Optimizes trade-off between
response time, resource usage, and
reconfiguration cost

Requires full characterization of the
application and the infrastructure

Does not scale!

No foresight
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Replication

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, “Optimal operator deployment
and replication for elastic distributed data stream processing”, Concurrency and
Computation: Pract Exper., 2017



DEBS 2015 Grand Challenge application

computeRoutelD

. RabbitMQ

datasource  parser filterByCoordinates

metronome @® source @ operator @ sink

countByWindow partialRank globalRank



EDF + Reinforcement learning
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