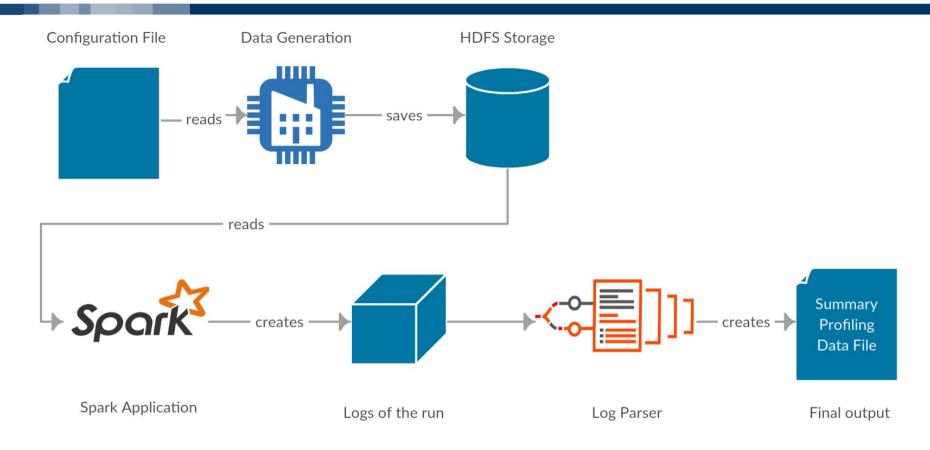
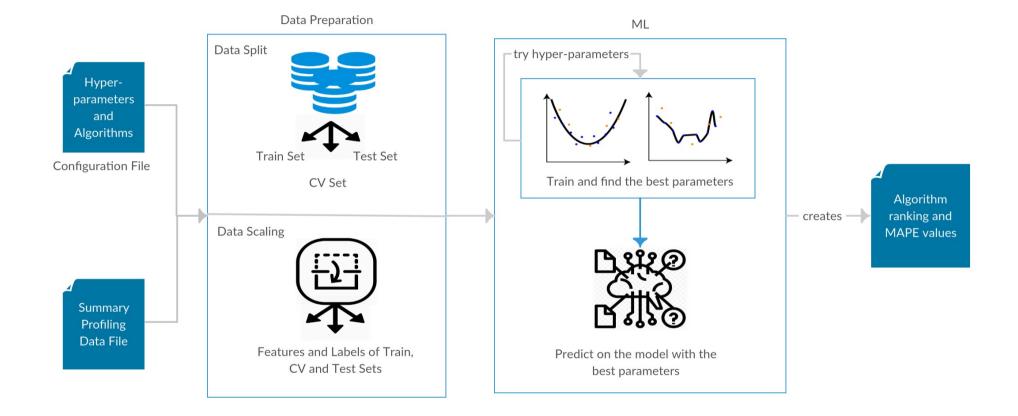


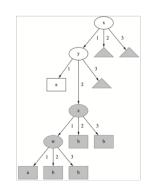
Department of Electronics, Informatics and Bioengineering

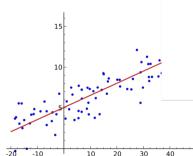

Machine learning for studying the performance of large scale systems

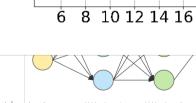

Danilo Ardagna, Marco Lattauda, Eugenio Gianniti

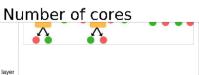
- Big data applications, e.g., base on Apache Spark framework, are rapidly growing
 - Hundreds/thousands of stages
- Growing interest also on Deep Learning, e.g., Convolutional Neural Networks
 - o Training on GPGPUs, thousands of cores in a single computational node
- Scalability issues of traditional analytical models
- Current focus:
 - Develop a benchmarking suite to automate the generation of performance profiles for ML training
 - Develop a library to automate the training of ML models and their hyperparameter tuning

Sparkbench Library Extension

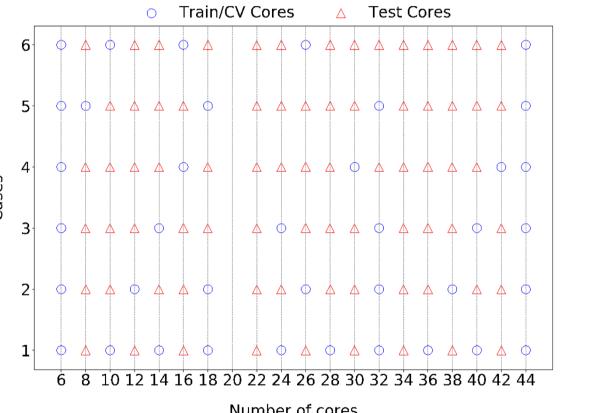


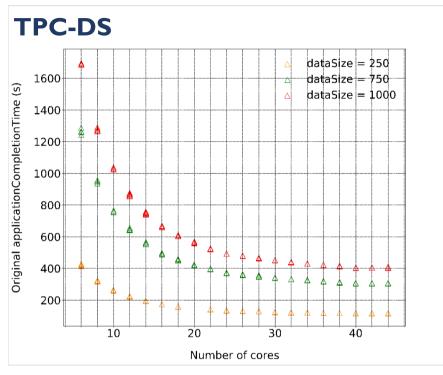

	Data Generation	Algorithm	
Logistic Regression	✓	✓	Similar toolchain
Linear Regression	\checkmark	✓	based on TPC-DS 8
Random Forest	✓	✓	CNNs
Spark DL		\checkmark	61113

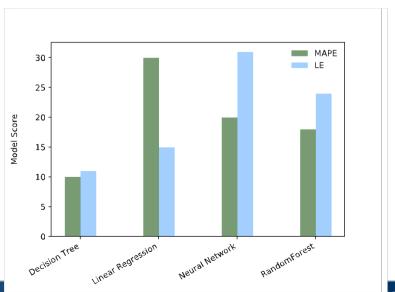


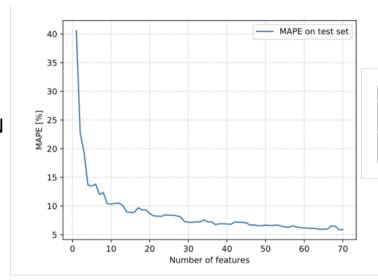

Experiment Settings

- Workloads:
 - TPC-DS the industry benchmark for data warehouse systems
 - Sparkbench library
 - CNNs training on TensorFlow and Pytorch
- Platforms:
 - Microsoft HDInsigh
 - IBM Power8 Cluste
- Evaluation Metrics:
 - Mean Absolute Perc
 - Fraction of Large Er
- Experiments:
 - Interpolation and Ex
- Regression Models:








@I TB Conf 3	Decision Tree	Linear Regression	Neural Network	Random Forest
Case 0	0.70	2.64	1.18	8.33
Case 1	8.62	5.69	3.36	11.26
Case 2	11.95	6.82	6.77	17.12
Case 3	15.41	5.64	6.48	16.48
Case 4	17.36	8.33	44.58	15.06
Case 5	24.70	33.58	11.92	33.17
Case 6	10.79	41.84	5.43	22.88

	Data Size in Train/CV Set	Data Size in Test Set
1	250 GB	250 GB
2	750 GB	750 GB
3	1000 GB	1000 GB
4	250 and 750 GB	1000 GB
5	250 and 1000 GB	750 GB
6	750 and 1000 GB	250 GB

Extrapolation goals:

- Change the batch size
- Exploitation of new hardware
- Training of new versions of a CNN

Network	Framework	MAPE
AlexNet	PyTorch TensorFlow	8.28 5.08
ResNet-50	PyTorch TensorFlow	18.09 10.10

GPUs number Extr.

		GPU Type						
Network	Framework	K80	M60	GTX 1080Ti				
AlexNet	PyTorch	7.21	12.18	4.98				
Alexivet	TensorFlow	24.75	17.27	8.77				
ResNet-50	PyTorch	5.11	9.04	11.76				
Residet-50	TensorFlow	24.58	18.29	6.54				
VGG-19	PyTorch	12.20	15.98	24.13				
VGG-17	TensorFlow	8.84	13.52	13.65				

Extr. Inner Modules number

			GPU Type M60			
Network	Framework	Max N. IMs	1	2	4	
ResNet	PyTorch	4	23.51	27.95	17.40	
ResNet	PyTorch	5	24.85	25.11	16.75	
ResNet	PyTorch	6	26.76	20.40	16.63	
ResNet	PyTorch	8	17.06	7.93	15.99	

Batch Size Extr.

		GPU Type													
		P6	500	K80			M60			GTX 1080Ti					
Network	Framework	1	2	1	2	3	4	1	2	3	$\mid 4 \mid$	1	2	4	8
AlexNet	PyTorch	11.12	7.85	1.74	3.33	1.81	0.66	6.19	3.49	6.58	0.75	0.43	1.62	1.15	4.16
Alexinet	TensorFlow	9.83	10.04	2.30	2.61	4.28	2.82	7.19	6.36	6.91	6.96	4.06	5.36	1.14	1.12
ResNet-50	PyTorch	10.64	11.97	0.76	7.83	3.09	4.53	3.60	20.04	9.58	4.64	12.62	11.93	20.63	4.29
Residet-50	TensorFlow	2.37	14.35	10.25	1.27	1.84	6.83	2.08	2.79	3.07	21.49	0.68	6.44	1.43	12.06
VGG-19	PyTorch	-	-	13.88	21.71	27.63	9.65	10.74	18.54	13.81	7.68	24.98	17.40	2.93	14.06
	TensorFlow	-	-	18.20	0.92	1.16	10.58	7.34	5.06	2.74	6.92	22.88	6.37	24.12	23.56

Thank you