
Towards scalable deployment optimization
in the Fog using MDPs and Function Approximation

Gabriele Russo Russo

University of Rome Tor Vergata

Data Stream Processing (DSP)
processing Big Data in real-time

New trend: moving computation towards
data sources and consumers

2

Geo-distributed DSP: old and new challenges

I Non negligible network latency
I Heterogeneous computing resources (and usually less powerful. . .)
I Variable infrastructure conditions

:

I Application deployment must be adapted at run-time:
I how many parallel replicas for each operator? (elasticity)
I where to deploy each operator?
I when to change the deployment, incurring overhead?

3

Operator deployment adaptation

Operator Elasticity
I Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
I Computing infrastructure composed of regions
I Several types of computing resources available (e.g., VMs with

different capacity)

Operating costs for a single operator
I resources cost: depends on amount and type of used resources
I adaptation cost: proportional to performance degradation at each

deployment reconfiguration
I SLA violation: paid whenever the performance (i.e., processing latency)

violates a given threshold
→ would like to minimize all of them in the long-term

4

Operator deployment adaptation

Operator Elasticity
I Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
I Computing infrastructure composed of regions
I Several types of computing resources available (e.g., VMs with

different capacity)

Operating costs for a single operator
I resources cost: depends on amount and type of used resources
I adaptation cost: proportional to performance degradation at each

deployment reconfiguration
I SLA violation: paid whenever the performance (i.e., processing latency)

violates a given threshold
→ would like to minimize all of them in the long-term

4

MDP formulation

We model the problem as an infinite-horizon Markov Decision Process
I System state: current deployment and input data rate
I Actions: possible deployment adaptations

I Each state-action pair (s, a) associated with a cost c(s, a)
I We search for the optimal policy:

minimize
∑∞

t=0 γ
tc(st , at) γ ← discount factor ∈ [0, 1)

I Can be solved by DP, LP, reinforcement learning, . . .
I Resolution based on the Q function
I Traditional algorithms store Q in memory: an entry for each

state-action pair

5

MDP formulation

We model the problem as an infinite-horizon Markov Decision Process
I System state: current deployment and input data rate
I Actions: possible deployment adaptations

I Each state-action pair (s, a) associated with a cost c(s, a)
I We search for the optimal policy:

minimize
∑∞

t=0 γ
tc(st , at) γ ← discount factor ∈ [0, 1)

I Can be solved by DP, LP, reinforcement learning, . . .
I Resolution based on the Q function
I Traditional algorithms store Q in memory: an entry for each

state-action pair

5

Scalability

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 1x10
12

 1 2 3 4 5 6 7 8 9 10

S
ta

te
s

Deployment regions

1 res. types
3 res. types
5 res. types

22 GB of memory to store Q with 5 regions and 3 classes of resources
Does not scale in a Fog scenario (many applications to optimize!)

6

Function Approximation for MDPs

I Idea: replacing the Q table with a parametric function Q̂(s, a, θ)
I Need to store (and compute) only the parameters θ

I Today we focus on Linear Function Approximation:
Q̂(s, a, θ) = ∑

i φi(s, a)θi

I Defining a good set of features φi(s, a) is challenging
I More features = more parameters to compute and store
I A small set of features may prevent the algorithm to converge

7

Tile Coding

Idea: cover the state space with “tilings”

I adjacent states are aggregated in a single tile
I each state activates a tile (i.e., binary feature)
I fine-grained vs. coarse-grained tilings
I different number of dimensions and shape of tiles

8

Using Tile Coding

First step: homogeneous computing resources

I A binary feature for scaling operations (scale-out, scale-in)
→ captures adaptation cost

I Rectangles-based tilings to group states with
similar parallelism and input rate

I A stripes-based tiling to group states with similar load per replica
I 3 granularity settings: base, finer, coarser

9

Results: used memory

Used memory with respect to the tabular case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

U
s
e
d
 m

e
m

o
ry

 /
 T

a
b
u
la

r

Tabular
Tiling

Tiling (Finer)
Tiling (Coarser)

10

Simulation results: average cost

Base scenario, with homogeneous resources

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0.5 0.7 0.8 0.9 0.95 0.97 0.99

C
o
s
t

Discount factor

Tabular
Tiling

Tiling (Finer)
Tiling (Coarser)

11

Features for the heterogeneous scenario

I Considering parallelism is not enough any more:
computing resources with different cost and performance

I Would need a N-dimensional tiling:
input rate + amount of resources of each type

I Simpler idea, adding only a third dimension to the current tilings:
parallelism, input rate, type of the less powerful used resource

12

Preliminary results: 3 types of comp. resources

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0.5 0.7 0.8 0.9 0.95 0.97 0.99

C
o

s
t

Discount factor

Tabular Tiling

Near-optimal results for γ < 0.99, using 2% of the memory 13

Conclusion

I A MDP-based framework for optimizing deployment in the Fog
I Function Approximation techniques are promising for scalability

Still work to do for better performance:
I Automatic feature engineering (e.g., adaptive tiling)
I Artificial Neural Networks

+ Extend to similar resource allocation problems in the Fog

14

Thanks for your attention!

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

Data Stream Processing (DSP)

I A computational paradigm for real-time Big Data analysis
I Continuous processing of unbounded sequences: data streams
I Data processed “on the fly”

MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

I System state: s = (K, λ)
kr ,τ = replicas deployed in region r using instances of type τ
λ = current input data rate for the operator (discretized)

I Actions:
I add a replica on a resource of type t in region r
I kill one of the active replicas
I do nothing

I Each state-action pair associated with a cost c(s, a):
c(s, a) = wRcresources(s, a) + wAcadaptation(s, a) + wScSLA(s, a)

I We search for the optimal policy π∗ : S → A:
minimize

∑∞
t=0 γ

tc(st , at) γ ← discount factor ∈ [0, 1)

Solving the MDP

<1-| handout:0> An optimal policy can be found by standard
techniques:
linear programming, dynamic programming, reinforcement learning, . . .

I Classical DP algorithms (e.g., Value Iteration) rely on Q function:
expected long-term cost of every action in every state

I Computed iteratively until convergence
I Q function stored in a Q table in memory:

an entry for each state-action pair

Trajectory Based Value Iteration

Fog Computing

New trends for Big Data: geo-distributed processing

From large data centers in the Cloud to. . . everywhere

Executing DSP applications: placement

How to place the application components
over a computing infrastructure?

Data source

Network latency and resource heterogeneity impact the QoS!

A (centralized) optimization problem

EDRP
Elastic DSP Replication and Placement

I ILP model
I Optimizes trade-off between

response time, resource usage, and
reconfiguration cost

I Requires full characterization of the
application and the infrastructure

I Does not scale!
I No foresight

Replication

Placement

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, “Optimal operator deployment
and replication for elastic distributed data stream processing”, Concurrency and
Computation: Pract Exper., 2017

DEBS 2015 Grand Challenge application

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome

lterByCoordinates countByWindow globalRankdatasource parser partialRank

EDF + Reinforcement learning

	Appendix

