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Data Stream Processing (DSP)
processing Big Data in real-time

New trend: moving computation towards
data sources and consumers
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Geo-distributed DSP: old and new challenges

I Non negligible network latency
I Heterogeneous computing resources (and usually less powerful. . . )
I Variable infrastructure conditions

:

I Application deployment must be adapted at run-time:
I how many parallel replicas for each operator? (elasticity)
I where to deploy each operator?
I when to change the deployment, incurring overhead?

3



Operator deployment adaptation

Operator Elasticity
I Parallelism should change over time depending on input data rate

Heterogeneous infrastructure
I Computing infrastructure composed of regions
I Several types of computing resources available (e.g., VMs with

different capacity)

Operating costs for a single operator
I resources cost: depends on amount and type of used resources
I adaptation cost: proportional to performance degradation at each

deployment reconfiguration
I SLA violation: paid whenever the performance (i.e., processing latency)

violates a given threshold
→ would like to minimize all of them in the long-term
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MDP formulation

We model the problem as an infinite-horizon Markov Decision Process
I System state: current deployment and input data rate
I Actions: possible deployment adaptations

I Each state-action pair (s, a) associated with a cost c(s, a)
I We search for the optimal policy:

minimize
∑∞

t=0 γ
tc(st , at) γ ← discount factor ∈ [0, 1)

I Can be solved by DP, LP, reinforcement learning, . . .
I Resolution based on the Q function
I Traditional algorithms store Q in memory: an entry for each

state-action pair
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Scalability
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22 GB of memory to store Q with 5 regions and 3 classes of resources
Does not scale in a Fog scenario (many applications to optimize!)
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Function Approximation for MDPs

I Idea: replacing the Q table with a parametric function Q̂(s, a, θ)
I Need to store (and compute) only the parameters θ

I Today we focus on Linear Function Approximation:
Q̂(s, a, θ) = ∑

i φi(s, a)θi

I Defining a good set of features φi(s, a) is challenging
I More features = more parameters to compute and store
I A small set of features may prevent the algorithm to converge
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Tile Coding

Idea: cover the state space with “tilings”

I adjacent states are aggregated in a single tile
I each state activates a tile (i.e., binary feature)
I fine-grained vs. coarse-grained tilings
I different number of dimensions and shape of tiles
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Using Tile Coding

First step: homogeneous computing resources

I A binary feature for scaling operations (scale-out, scale-in)
→ captures adaptation cost

I Rectangles-based tilings to group states with
similar parallelism and input rate

I A stripes-based tiling to group states with similar load per replica
I 3 granularity settings: base, finer, coarser
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Results: used memory

Used memory with respect to the tabular case
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Simulation results: average cost

Base scenario, with homogeneous resources
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Features for the heterogeneous scenario

I Considering parallelism is not enough any more:
computing resources with different cost and performance

I Would need a N-dimensional tiling:
input rate + amount of resources of each type

I Simpler idea, adding only a third dimension to the current tilings:
parallelism, input rate, type of the less powerful used resource
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Preliminary results: 3 types of comp. resources
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Conclusion

I A MDP-based framework for optimizing deployment in the Fog
I Function Approximation techniques are promising for scalability

Still work to do for better performance:
I Automatic feature engineering (e.g., adaptive tiling)
I Artificial Neural Networks

+ Extend to similar resource allocation problems in the Fog
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Thanks for your attention!

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso
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Data Stream Processing (DSP)

I A computational paradigm for real-time Big Data analysis
I Continuous processing of unbounded sequences: data streams
I Data processed “on the fly”



MDP formulation

We model the problem as an infinite-horizon Markov Decision Process

I System state: s = (K, λ)
kr ,τ = replicas deployed in region r using instances of type τ
λ = current input data rate for the operator (discretized)

I Actions:
I add a replica on a resource of type t in region r
I kill one of the active replicas
I do nothing

I Each state-action pair associated with a cost c(s, a):
c(s, a) = wRcresources(s, a) + wAcadaptation(s, a) + wScSLA(s, a)

I We search for the optimal policy π∗ : S → A:
minimize

∑∞
t=0 γ

tc(st , at) γ ← discount factor ∈ [0, 1)



Solving the MDP

<1-| handout:0> An optimal policy can be found by standard
techniques:
linear programming, dynamic programming, reinforcement learning, . . .

I Classical DP algorithms (e.g., Value Iteration) rely on Q function:
expected long-term cost of every action in every state

I Computed iteratively until convergence
I Q function stored in a Q table in memory:

an entry for each state-action pair



Trajectory Based Value Iteration



Fog Computing



New trends for Big Data: geo-distributed processing

From large data centers in the Cloud to. . . everywhere



Executing DSP applications: placement

How to place the application components
over a computing infrastructure?

Data source

Network latency and resource heterogeneity impact the QoS!



A (centralized) optimization problem

EDRP
Elastic DSP Replication and Placement

I ILP model
I Optimizes trade-off between

response time, resource usage, and
reconfiguration cost

I Requires full characterization of the
application and the infrastructure

I Does not scale!
I No foresight

Replication

Placement

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, “Optimal operator deployment
and replication for elastic distributed data stream processing”, Concurrency and
Computation: Pract Exper., 2017



DEBS 2015 Grand Challenge application

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome

lterByCoordinates countByWindow globalRankdatasource parser partialRank



EDF + Reinforcement learning
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