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Exploiting Elasticity

● New scenario: IoT edge/fog computing

● New software architectures: container-based architectures 

● Common requirement: elasticity



Goal

To adapt at run-time the deployment 
of container-based  applications 
jointly consider horizontal and vertical 
scalability.
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Main Contributions

Reinforcement learning algorithms:

● Q-learning  
● Dyna-Q
● Model-based

Autonomic elasticity of container-based applications:

● Horizontal or Vertical
● Horizontal and Vertical

model-free

model-based
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● Container-based applications

● Per-application RL agent
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System Definition

For each application, we define:

● s = (k, u, c)  : application state

● k : number of containers

● u : CPU utilization (discretized)

● c : CPU quota assigned to each 
container

● a : action carried out in the state s

○ 5 Actions: a in {-1, 0 , 1, -r, r} 
○ 9 Actions: a in {-1, 0 , 1} x {-r, 0, r} 

● Container-based applications

● Per-application RL agent

● RL agent adapts: 

○ number of containers

○ amount of resources 

assigned to each 

application



Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

Immediate cost defined as the 
weighted sum of:
● reconfiguration cost;
● performance cost;
● resource cost.



Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

Vertical scaling operations lead to 
application unavailability

Resource cost, proportional to the amount of allocated 
resources (k and c)

Penalty if the application response time violates the SLA 
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Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s
● Q-learning

○ uses Q (s, a) to choose the action to be performed in the state s 
○ action selection policy: ε-greedy
○  estimates Q(s, a) from the experience:

● Dyna-Q
○ same features as Q-learning;
○ mantains a model  (s,a)        (s’, c);
○ uses the model to simulate the experience and update Q(s, a).
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Model-Based Reinforcement Learning

● selects the best action in terms of Q(s, a)

● uses the Bellman equation to update Q (s, a):

● Idea: to approximate unknown factors using experience

unknown



Evaluation 



Container Deployment Simulator

RL Agent

Utilization 
Monitor SLA Monitor

Container-based application

Requests



Experimental setting



Q-learning
(9 actions)

17 ms

64 %

4 

60 %

Q-learning
(5 actions)

14 ms

57 %

4 

61 %

n. SLA violations: 28.12%n. SLA violations: 18.52%



Dyna-Q
(9 actions)

12 ms

59 %

4

70 %

Dyna-Q
(5 actions)

13 ms

61 %
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n. SLA violations: 21.54%n. SLA violations: 17.92%



Model-based
(9 actions)

13ms

59 %

3

70 %

n. SLA violations: 1.60%

Model-based
(5 actions)

9ms

57 %

2

93 %

n. SLA violations: 1.15%



Conclusion

Ongoing Work:

● To prototype the proposed solution (e.g., using Docker Swarm) 
● To consider resource heterogeneity and their geo-distribution

● We designed RL-based solutions for the autonomic elasticity 
of containers

● We evaluated different techniques and system models
● We showed the benefits of model-based approaches

○ they reduce n. of SLA violations
○ they more quickly learn adaptation policies



Thank you!

Fabiana Rossi
f.rossi@ing.uniroma2.it



Simulation Configuration
● Application modeled as a M/D/n queue

○ n: number of containers
○ application rate μ = 200 · c requests/s, where c ∈ (0, 1] is 

the CPU share assigned to application; 
● Target response time: 50 ms
● Max number of containers per-application: 10
● Discretization factors: 

○ Utilization:  10%
○ CPU share: 10%

● Weights: w_rcf = 0.001, w_res = 0.019, w_perf = 0.98



Internet of Things



Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we 
need to address four concerns:

● hardware abstraction;
● programmability;
● interoperability;
● elasticity.
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Elasticity
The possibility of cloud computing to provide resources on demand has 
encouraged the development of elastic applications.
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Horizontal Elasticity

Vertical Elasticity

scale-in scale-out

scale-down scale-up

Elasticity
The possibility of cloud computing to provide resources on demand has 
encouraged the development of elastic applications.



Reinforcement Learning
RL is a machine learning technique, where: 
● the agent learns how to map situations to actions through the 

experience.

Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT Press, Cambridge, 1998.



Three-tier IoT Edge Computing Infrastructure



Virtualization techniques comparison
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Known and Unknown Cost

To estimate c(s, a, s'), it is divided into two terms: known and unknown cost.

To update the unknown cost estimate:

known cost unknown cost



Estimated Transition Probability 
The transition probability is defined as

Given                  and                  at time instant i, the estimated transition probability is

otherwise



Q-learning
(9 actions)
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64 %
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60 %

Q-learning
(5 actions)
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57 %
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61 %

n. reconfigurations: 89.75%n. reconfigurations: 76.56%



Dyna-Q
(9 actions)

12 ms

59 %

4

70 %

Dyna-Q
(5 actions)

13 ms

61 %

3

69 %

n. reconfigurations: 92.75%n. reconfigurations: 87.60%



Model-based
(9 actions)

13ms

59 %

3

70 %

n. reconfigurations: 46.91%

Model-based
(5 actions)

9ms

57 %
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93 %

n. reconfigurations: 34.09%


