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Exploiting Elasticity

e New scenario: loT edge/fog computing
e New software architectures: container-based architectures

e Common requirement: elasticity




_Goal

To adapt at run-time the deployment
of container-based applications
jointly consider horizontal and vertical
scalability.
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heuristics;
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Main Contributions

Autonomic elasticity of container-based applications:
e Horizontal or Vertical

e Horizontal and Vertical

Reinforcement learning algorithms:

* Q-learning model-free
e Dyna-Q
e Model-based model-based




System Definition

e Container-based applications
e Per-application RL agent
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Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

C(Sa a, 8/) — Wref * Crcf

T Wperf * Cperf

T Wres * Cres

Immediate cost defined as the
weighted sum of:

e reconfiguration cost;

e performance cost;

® resource cost.




Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

C(S, a, 3,) — wI‘Cf . CI‘Cf 5 Vertical scaling operations lead to

application unavailability

¢ Cperf —> Penalty if the application response time violates the SLA

*| Cres

- Resource cost, proportional to the amount of allocated

resources (k and c)
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e Qf(s,a): estimate of long-term cost due to the execution of actionains
e Q-learning

o uses Q (s, a)to choose the action to be performed in the state s

o action selection policy: e-greedy

o estimates Q(s, a) from the experience:

Q(si,a;) — (1 —a)Q(si,a;) +al|ci+~y min  Q(sjy1,a’)
",EvA':-“1+ l)

e Dyna-Q
o same features as Q-learning;
o mantains amodel (s,a)—>(s’, ¢);
o uses the model to simulate the experience and update Q(s, a).
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Model-Based Reinforcement Learning

® selects the best action in terms of Q(s, a)
® usesthe Bellman equation to update Q (s, a):

unknown

Q(s,a) = Z p(s'|s,a)lle(s,a, s+~ (11}1!& (J(S,,(l,)] H:;jﬁ\)

o Idea: to approximate unknown factors using experience
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Container Deployment Simulator

Container-based application

Requests
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Utilization
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L’ RL Agent A




éxperimental setting
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Conclusion

e We designed RL-based solutions for the autonomic elasticity
of containers
e We evaluated different techniques and system models
e We showed the benefits of model-based approaches
o they reduce n. of SLA violations
o they more quickly learn adaptation policies

Ongoing Work:

e To prototype the proposed solution (e.g., using Docker Swarm)
e To consider resource heterogeneity and their geo-distribution




Thank you!

Fabiana Rossi
f.rossi@ing.uniromaz.it




Simulation Configuration

e Application modeled as a M/D/n queue
o n:number of containers
o application rate u =200 - c requests/s, where c € (0, 1] is
the CPU share assigned to application;
e Targetresponse time: 50 ms
e Max number of containers per-application: 10
e Discretization factors:
o Utilization: 10%
o CPU share: 10%
e Weights: w_rcf=0.001, w_res = 0.019, w_perf=0.98




Internet of Things




Empowering loT Edge Computing

To fully attain the potential of edge computing for loT, we
need to address four concerns:

hardware abstraction;
programmability;
interoperability;
elasticity.
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encouraged the development of elastic applications.
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The possibility of cloud computing to provide resources on demand has
encouraged the development of elastic applications.

Horizontal Elasticity
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Reinforcement Learning

RL is a machine learning technique, where:
e the agentlearns how to map situations to actions through the
experience.

:l Agent ||

state reward action

Rr+l (
S.. | Environment J<—

\.

Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT Press, Cambridge, 1998.



‘Three-tier loT Edge Computing Infrastructure

INTERNET

LAN/WAN

......................................

SENSORS AND CONTROLLERS




Virtualization techniques comparison
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Known and Unknown Cost

To estimate c(s, a, s'), it is divided into two terms: known and unknown cost.

c(s,a,s’) =

known cost

unknown cost

Wref * Cref + Wres * Cres

+

Wperf * Cperf

To update the unknown cost estimate:

Cu(8') +— (1 —a)cy,(s') + ac,




Estimated Transition Probability

The transition probability is defined as

p(s'|s,a) = Pls;1 = (K, v, cd)|s; = (k,u,c),a; =al =
{ Plu; 1 = ' |u; = u) E=k+a N =c+ ay
B 0 - otherwise

Given ©, = jJu and u/ = j' G attime instant j, the estimated transition probability is

}/)j 1,55

7.7 T =L
’ D 10 Ml




(ms)

Response time

Utilization

Number of
containers

CPU share

Q-learning Q-learning
(5 actions) (9 actions)
[0}
150 £ 150 :
100 14 ms gfg 100 17 ms
50 8= 50
w
0 K 0
c
S
57% 7§ 64 %
5
34
5L
4 2837 4
ET
=38
2 100 '
8 75
61% & 60 %
o 25
(&) 0 . ; : h h :
0 500 1000 1500 2000 2500 3000 3500 4000 0 1000 1500 2000 2500 3000 3500 4000

- Simulation time
n. reconfigurations: 89.75%

Simulation time
n. reconfigurations: 76.56%



Response time
(ms)

Utilization

Number of
containers

CPU share

150

Dyna-Q Dyna-Q

(5 actions) @ (9 actions)

£ 150
O~ L

13ms 282 190 12 ms
g~ 50
8 0
c
2

61% & 59 %
N
5
B2
52

3 o'F 4
EtT
=z8
g 100 '

69% 5 /5 ‘ ‘ ‘ | 70 %
5 50 .
o 25 |

A A " " " M M O 0 L L L ! s L "
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Simulation time - Simulation time

n. reconfigurations: 87.60% n. reconfigurations: 92.75%



Response time

Utilization

Number of
containers

CPU share

Model-based Model-based

(5 actions) " (9 actions)
£ 150
9ms 35 100 13ms
c
SE 50 [l--mme e
(%]
Q
o
&
S
57 % & 59 %
.%'
5
E 34
3= 3
2 £ ]
E2
=8
—1— | [ 1| 8
193% G 170 %
] =
o
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Simulation time — Simulation time

n. reconfigurations: 34.09% n. reconfigurations: 46.91%



