Autonomic Container Elasticity through Reinforcement Learning

Fabiana Rossi

Department of Civil Engineering and Computer Science Engineering University of Rome Tor Vergata, Italy

Exploiting Elasticity

• New scenario: IoT edge/fog computing

• **New software architectures**: container-based architectures

• **Common requirement**: *elasticity*

Goal

To adapt at run-time the deployment of container-based applications jointly consider horizontal and vertical scalability.

Solutions proposed in literature:

- threshold-based policies;
- optimization (mainly ILP);
- heuristics;
- control theory;
- time series analysis;
- Reinforcement Learning.

Solutions proposed in literature:

- threshold-based policies;
- optimization (mainly ILP);
- heuristics;
- control theory;
- time series analysis;
- Reinforcement Learning.

Limits of existing solutions:

- many works consider horizontal elasticity, few works consider vertical elasticity;
- lack of general approaches.

Solutions proposed in literature:

- threshold-based policies;
- optimization (mainly ILP);
- heuristics;
- control theory;
- time series analysis;
- Reinforcement Learning.

Limits of existing solutions:

- many works consider horizontal elasticity, few works consider vertical elasticity;
- lack of general approaches.

Main Contributions

Autonomic elasticity of container-based applications:

- Horizontal or Vertical
- Horizontal and Vertical

Reinforcement learning algorithms:

- Q-learning model-free
- Dyna-Q
- Model-based

model-based

System Definition

- Container-based applications
- Per-application RL agent
- RL agent adapts:
 - number of containers
 - amount of resources assigned to each application

System Definition

- Container-based applications
- Per-application RL agent
- RL agent adapts:
 - number of containers
 - amount of resources assigned to each application

For each application, we define:

- *s* = (*k*, *u*, *c*) : application state
- *k* : number of containers
- *u* : CPU utilization (discretized)
- c: CPU quota assigned to each container
- *a* : action carried out in the state s
 - 5 Actions: *a* in {-1, 0, 1, -*r*, *r*}
 - 9 Actions: *a* in {-1, 0, 1} *x* {-*r*, 0, *r*}

Immediate Cost Function

Immediate Cost associated to each triple (*s*, *a*, *s*').

$$egin{aligned} c(s,a,s') &= w_{ ext{rcf}} \cdot c_{ ext{rcf}} \ &+ w_{ ext{perf}} \cdot c_{ ext{perf}} \ &+ w_{ ext{res}} \cdot c_{ ext{res}} \end{aligned}$$

Immediate cost defined as the weighted sum of:

- reconfiguration cost;
- performance cost;
- resource cost.

Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

• Q (s, a): estimate of long-term cost due to the execution of action a in s

- Q (s, a): estimate of long-term cost due to the execution of action a in s
- Q-learning
 - uses Q (s, a) to choose the action to be performed in the state s
 - $\circ \quad \text{action selection policy: ϵ-greedy} \\$

- Q (s, a): estimate of long-term cost due to the execution of action a in s
- Q-learning
 - uses Q (s, a) to choose the action to be performed in the state s
 - action selection policy: ε-greedy
 - estimates Q(s, a) from the experience:

$$Q(s_i, a_i) \leftarrow (1 - \alpha)Q(s_i, a_i) + \alpha \left[c_i + \gamma \min_{a' \in \mathcal{A}(s_{i+1})} Q(s_{i+1}, a')\right]$$

- Q (s, a): estimate of long-term cost due to the execution of action a in s
- Q-learning
 - uses Q (s, a) to choose the action to be performed in the state s
 - action selection policy: ε-greedy
 - estimates Q(s, a) from the experience:

$$Q(s_i, a_i) \leftarrow (1 - \alpha)Q(s_i, a_i) + \alpha \left[c_i + \gamma \min_{a' \in \mathcal{A}(s_{i+1})} Q(s_{i+1}, a')\right]$$

- Dyna-Q
 - same features as Q-learning;

- Q (s, a): estimate of long-term cost due to the execution of action a in s
- Q-learning
 - uses Q (s, a) to choose the action to be performed in the state s
 - action selection policy: ε-greedy
 - estimates Q(s, a) from the experience:

$$Q(s_i, a_i) \leftarrow (1 - \alpha)Q(s_i, a_i) + \alpha \left[c_i + \gamma \min_{a' \in \mathcal{A}(s_{i+1})} Q(s_{i+1}, a')\right]$$

• Dyna-Q

- same features as Q-learning;
- mantains a model $(s,a) \rightarrow (s', c);$
- uses the model to simulate the experience and update Q(s, a).

• selects the best action in terms of Q(s, a)

- selects the best action in terms of Q(s, a)
- uses the Bellman equation to update Q (s, a):

$$Q(s,a) = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[c(s,a,s') + \gamma \min_{a' \in \mathcal{A}} Q(s',a') \right] \quad \substack{\forall s \in \mathcal{S}, \\ \forall a \in \mathcal{A}(s)}$$

- selects the best action in terms of Q(s, a)
- uses the Bellman equation to update Q (s, a):

$$Q(s,a) = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[c(s,a,s') + \gamma \min_{a' \in \mathcal{A}} Q(s',a') \right] \quad \substack{\forall s \in \mathcal{S}, \\ \forall a \in \mathcal{A}(s)}$$

- selects the best action in terms of Q(s, a)
- uses the Bellman equation to update Q (s, a):

$$Q(s,a) = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[c(s,a,s') + \gamma \min_{a' \in \mathcal{A}} Q(s',a') \right] \quad \substack{\forall s \in \mathcal{S}, \\ \forall a \in \mathcal{A}(s)}$$

Idea: to approximate unknown factors using experience

Evaluation

Container Deployment Simulator

Experimental setting

$$egin{aligned} c(s,a,s') &= w_{ ext{rcf}} \cdot c_{ ext{rcf}} \ &+ w_{ ext{perf}} \cdot c_{ ext{perf}} \ &+ w_{ ext{res}} \cdot c_{ ext{res}} \end{aligned}$$

n. SLA violations: 17.92%

n. SLA violations: 21.54%

n. SLA violations: 1.15%

n. SLA violations: 1.60%

Conclusion

- We designed RL-based solutions for the autonomic elasticity of containers
- We evaluated different techniques and system models
- We showed the benefits of model-based approaches
 - they reduce n. of SLA violations
 - they more quickly learn adaptation policies

Ongoing Work:

- To prototype the proposed solution (e.g., using Docker Swarm)
- To consider resource heterogeneity and their geo-distribution

Thank you!

Fabiana Rossi f.rossi@ing.uniroma2.it

Simulation Configuration

- Application modeled as a M/D/n queue
 - *n*: number of containers
 - application rate μ = 200 · c requests/s, where c ∈ (0, 1] is the CPU share assigned to application;
- Target response time: 50 ms
- Max number of containers per-application: 10
- Discretization factors:
 - Utilization: 10%
 - $\circ~$ CPU share: 10%
- Weights: w_rcf = 0.001, w_res = 0.019, w_perf = 0.98

Internet of Things

Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we need to address four concerns:

- hardware abstraction;
- programmability;
- interoperability;
- elasticity.

Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we need to address four concerns:

- hardware abstraction;
- programmability;
- interoperability;
- elasticity.

Software containers

Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we need to address four concerns:

- hardware abstraction;
- programmability;
- interoperability;
- elasticity.

Software containers

Elasticity

The possibility of cloud computing to provide resources on demand has encouraged the development of elastic applications.

Elasticity

The possibility of cloud computing to provide resources on demand has encouraged the development of elastic applications.

Elasticity

The possibility of cloud computing to provide resources on demand has encouraged the development of elastic applications.

Reinforcement Learning

RL is a machine learning technique, where:

• the agent learns how to map situations to actions through the experience.

Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT Press, Cambridge, 1998.

Three-tier IoT Edge Computing Infrastructure

SENSORS AND CONTROLLERS

Virtualization techniques comparison

Virtualization techniques comparison

Арр А	Арр В		docker	
Bins/Libs	Bins/Libs			
Guest OS	Guest OS		Арр А	Арр В
			Bins/Libs	Bins/Libs
Hypervisor			Docker Engine	
Host OS			Host OS	
Server			Server	
Virtual machines			Software containers	

Known and Unknown Cost

To estimate c(s, a, s'), it is divided into two terms: known and unknown cost.

known cost unknown cost $c(s, a, s') = w_{
m rcf} \cdot c_{
m rcf} + w_{
m res} \cdot c_{
m res} + w_{
m perf} \cdot c_{
m perf}$

To update the unknown cost estimate:

$$\hat{c}_u(s') \leftarrow (1-lpha) \hat{c}_u(s') + lpha c_u$$

Estimated Transition Probability

The transition probability is defined as

$$egin{aligned} p(s'|s,a) &=& P[s_{i+1} = (k',u',c')|s_i = (k,u,c), a_i = a] = \ &=& egin{cases} P[u_{i+1} = u'|u_i = u] & k' = k + a_1 \wedge c' = c + a_2 \ 0 & ext{otherwise} \end{aligned}$$

Given $u=jar{u}$ and $u'=j'ar{u}$ at time instant *i*, the **estimated transition probability** is

$$\widehat{P_{j,j'}} = rac{n_{i,jj'}}{\sum_{l=0}^L n_{i,jl}}$$

n. reconfigurations: 87.60%

n. reconfigurations: 92.75%

n. reconfigurations: 34.09%

n. reconfigurations: 46.91%