
Autonomic Container 
Elasticity through 
Reinforcement Learning

Fabiana Rossi 

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy



Exploiting Elasticity

● New scenario: IoT edge/fog computing

● New software architectures: container-based architectures 

● Common requirement: elasticity



Goal

To adapt at run-time the deployment 
of container-based  applications 
jointly consider horizontal and vertical 
scalability.



Solutions proposed in literature:

● threshold-based policies;
● optimization (mainly ILP);
● heuristics;
● control theory;
● time series analysis;
● Reinforcement Learning.



Solutions proposed in literature:

● threshold-based policies;
● optimization (mainly ILP);
● heuristics;
● control theory;
● time series analysis;
● Reinforcement Learning.

Limits of existing solutions:

● many works consider horizontal 
elasticity, few works consider 
vertical elasticity;

● lack of general approaches.



Solutions proposed in literature:

● threshold-based policies;
● optimization (mainly ILP);
● heuristics;
● control theory;
● time series analysis;
● Reinforcement Learning.

Limits of existing solutions:

● many works consider horizontal 
elasticity, few works consider 
vertical elasticity;

● lack of general approaches.



Main Contributions

Reinforcement learning algorithms:

● Q-learning  
● Dyna-Q
● Model-based

Autonomic elasticity of container-based applications:

● Horizontal or Vertical
● Horizontal and Vertical

model-free

model-based



System Definition

● Container-based applications

● Per-application RL agent

● RL agent adapts: 

○ number of containers

○ amount of resources 

assigned to each 

application



System Definition

For each application, we define:

● s = (k, u, c)  : application state

● k : number of containers

● u : CPU utilization (discretized)

● c : CPU quota assigned to each 
container

● a : action carried out in the state s

○ 5 Actions: a in {-1, 0 , 1, -r, r} 
○ 9 Actions: a in {-1, 0 , 1} x {-r, 0, r} 

● Container-based applications

● Per-application RL agent

● RL agent adapts: 

○ number of containers

○ amount of resources 

assigned to each 

application



Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

Immediate cost defined as the 
weighted sum of:
● reconfiguration cost;
● performance cost;
● resource cost.



Immediate Cost Function

Immediate Cost associated to each triple (s, a, s').

Vertical scaling operations lead to 
application unavailability

Resource cost, proportional to the amount of allocated 
resources (k and c)

Penalty if the application response time violates the SLA 



Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s



Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s
● Q-learning

○ uses Q (s, a) to choose the action to be performed in the state s 
○ action selection policy: ε-greedy



Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s
● Q-learning

○ uses Q (s, a) to choose the action to be performed in the state s 
○ action selection policy: ε-greedy
○  estimates Q(s, a) from the experience:



Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s
● Q-learning

○ uses Q (s, a) to choose the action to be performed in the state s 
○ action selection policy: ε-greedy
○  estimates Q(s, a) from the experience:

● Dyna-Q
○ same features as Q-learning;



Reinforcement Learning Algorithms
● Q (s, a): estimate of long-term cost due to the execution of action a in s
● Q-learning

○ uses Q (s, a) to choose the action to be performed in the state s 
○ action selection policy: ε-greedy
○  estimates Q(s, a) from the experience:

● Dyna-Q
○ same features as Q-learning;
○ mantains a model  (s,a)        (s’, c);
○ uses the model to simulate the experience and update Q(s, a).



Model-Based Reinforcement Learning

● selects the best action in terms of Q(s, a)



Model-Based Reinforcement Learning

● selects the best action in terms of Q(s, a)

● uses the Bellman equation to update Q (s, a):



Model-Based Reinforcement Learning

● selects the best action in terms of Q(s, a)

● uses the Bellman equation to update Q (s, a):

unknown



Model-Based Reinforcement Learning

● selects the best action in terms of Q(s, a)

● uses the Bellman equation to update Q (s, a):

● Idea: to approximate unknown factors using experience

unknown



Evaluation 



Container Deployment Simulator

RL Agent

Utilization 
Monitor SLA Monitor

Container-based application

Requests



Experimental setting



Q-learning
(9 actions)

17 ms

64 %

4 

60 %

Q-learning
(5 actions)

14 ms

57 %

4 

61 %

n. SLA violations: 28.12%n. SLA violations: 18.52%



Dyna-Q
(9 actions)

12 ms

59 %

4

70 %

Dyna-Q
(5 actions)

13 ms

61 %

3

69 %

n. SLA violations: 21.54%n. SLA violations: 17.92%



Model-based
(9 actions)

13ms

59 %

3

70 %

n. SLA violations: 1.60%

Model-based
(5 actions)

9ms

57 %

2

93 %

n. SLA violations: 1.15%



Conclusion

Ongoing Work:

● To prototype the proposed solution (e.g., using Docker Swarm) 
● To consider resource heterogeneity and their geo-distribution

● We designed RL-based solutions for the autonomic elasticity 
of containers

● We evaluated different techniques and system models
● We showed the benefits of model-based approaches

○ they reduce n. of SLA violations
○ they more quickly learn adaptation policies



Thank you!

Fabiana Rossi
f.rossi@ing.uniroma2.it



Simulation Configuration
● Application modeled as a M/D/n queue

○ n: number of containers
○ application rate μ = 200 · c requests/s, where c ∈ (0, 1] is 

the CPU share assigned to application; 
● Target response time: 50 ms
● Max number of containers per-application: 10
● Discretization factors: 

○ Utilization:  10%
○ CPU share: 10%

● Weights: w_rcf = 0.001, w_res = 0.019, w_perf = 0.98



Internet of Things



Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we 
need to address four concerns:

● hardware abstraction;
● programmability;
● interoperability;
● elasticity.



Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we 
need to address four concerns:

● hardware abstraction;
● programmability;
● interoperability;
● elasticity.

Software containers



Empowering IoT Edge Computing

To fully attain the potential of edge computing for IoT, we 
need to address four concerns:

● hardware abstraction;
● programmability;
● interoperability;
● elasticity.

Software containers



Elasticity
The possibility of cloud computing to provide resources on demand has 
encouraged the development of elastic applications.



Horizontal Elasticity

scale-in scale-out

Elasticity
The possibility of cloud computing to provide resources on demand has 
encouraged the development of elastic applications.



Horizontal Elasticity

Vertical Elasticity

scale-in scale-out

scale-down scale-up

Elasticity
The possibility of cloud computing to provide resources on demand has 
encouraged the development of elastic applications.



Reinforcement Learning
RL is a machine learning technique, where: 
● the agent learns how to map situations to actions through the 

experience.

Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT Press, Cambridge, 1998.



Three-tier IoT Edge Computing Infrastructure



Virtualization techniques comparison

Virtual machines Software containers



Virtualization techniques comparison

Virtual machines Software containers



Known and Unknown Cost

To estimate c(s, a, s'), it is divided into two terms: known and unknown cost.

To update the unknown cost estimate:

known cost unknown cost



Estimated Transition Probability 
The transition probability is defined as

Given                  and                  at time instant i, the estimated transition probability is

otherwise



Q-learning
(9 actions)

17 ms

64 %

4 

60 %

Q-learning
(5 actions)

14 ms

57 %

4 

61 %

n. reconfigurations: 89.75%n. reconfigurations: 76.56%



Dyna-Q
(9 actions)

12 ms

59 %

4

70 %

Dyna-Q
(5 actions)

13 ms

61 %

3

69 %

n. reconfigurations: 92.75%n. reconfigurations: 87.60%



Model-based
(9 actions)

13ms

59 %

3

70 %

n. reconfigurations: 46.91%

Model-based
(5 actions)

9ms

57 %

2

93 %

n. reconfigurations: 34.09%


