Resource management from Cloud to Edge systems

Massimo Canonico - University of Piemonte Orientale

Who we are

Distributed Computing System group

Prof. Cosimo Anglano

Dott. Marco Guazzone

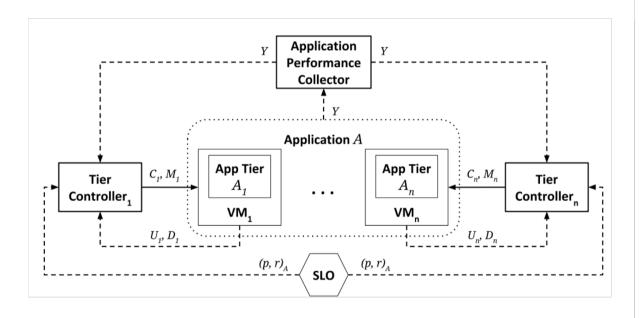
Dott. Massimo Canonico

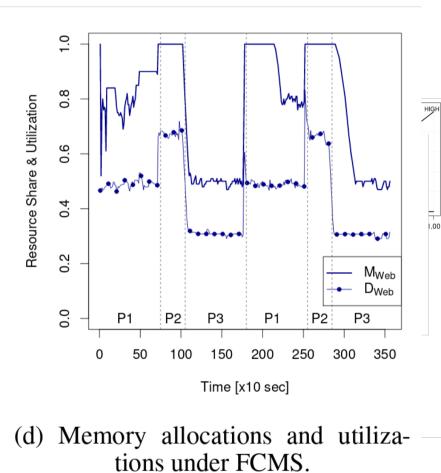
Research interests

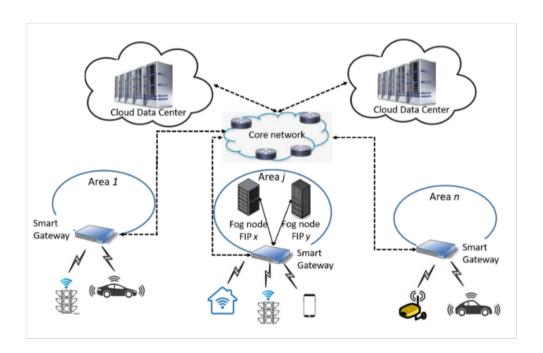
- Computing platforms
 - Cloud computing
 - Edge and Fog computing
 - Femtocloud computing
- What we have used
 - Game theory
 - Fuzzy controller
- Efficient resource management
 - Fault-tolerant and energy-aware algorithms
 - Cloud federation

Fault-tolerant and energy-aware algorithms

- Knowledge-free algorithms
 - Forecast with error
- Fault tolerant
 - Replication
 - Checkpoint
- Energy-aware
 - Consolidation: Switch-off/Switch-on resource
 - Cost Vs Benefits

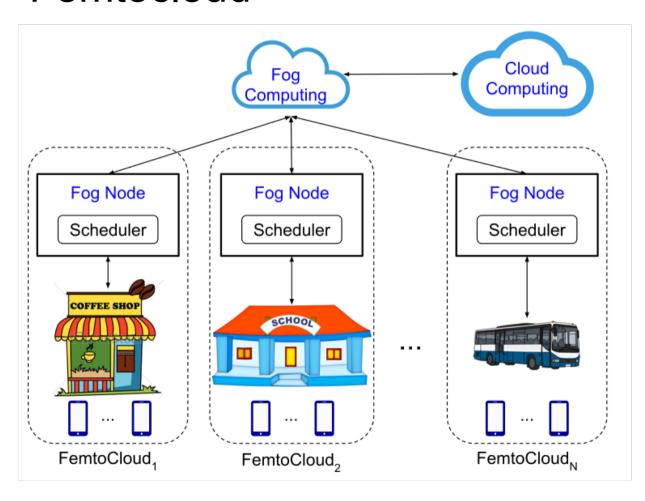

Cloud federation




CloudTUI-FTS

Fuzzy controller

Game theory



Fog Internet Provider (FIP)

TABLE 2. Parameters used in the experimental scenarios. Subscripts i and j take values on the set $\{1,2,3\}$.

	Parameter	Value
- App(i)	Number of applications associated to FIP i	1
$E_{i,j}$	Electricity price for FIP i in area j	0.0001 \$/Wh
FN(i,j)	Number of fog nodes for FIP i in area j	3
$L_{i,j}$	Penalty rate for FIP i and application j	0.022 \$/h
m	Number of FIPs	3
n	Number of applications	3
Q_{i}	Max request processing time for application i	$0.7 \mathrm{sec}$
$R_{i,j}$	Revenue rate for FIP i and application j	0.0022 \$/h
<i>I I</i>	CPU demand for any VM j and fog node i	0.05
W^{\max}	Max power consumption of fog node j	200 W
W_j^{\min}	Idle power consumption of fog node j	100 W
$ au_j$	Request processing time of any VM j	0.5 sec

Femtocloud


```
Algorithm 1: The WQR-UD scheduling algorithm.
 1 procedure Schedule(T,D,\tau_r)
       Input: task set T, device set D, replication threshold \tau_r.
       t \leftarrow \text{GetOldestTaskWithLowestNumReplicas}(T, \tau_r)
       d \leftarrow \mathsf{GetIdleDevice}(D)
       if t \neq \text{nil} and d \neq \text{nil} then
           if CheckpointExist(t) then
                RunTaskReplicaFromCheckpoint(t, d)
                RunTaskReplica(t, d)
           IncrNumTaskReplicas(t)
       end
12 end
13 procedure Main(T,D,e,\tau_r)
       Input: task set T, device set D, event e, replication threshold \tau_r.
       if EventType(e) = NewTask then
15
           t \leftarrow GetTask(e)
           InsertTask(T, t)
       else if EventType(e) = TaskDone then
           t \leftarrow GetTask(e)
            RemoveTaskReplicas(t, T)
       else if EventType(e) = DeviceIdle then
            d \leftarrow \text{GetIdleDevice}(e)
21
            InsertDevice(D, d)
       else if EventType(e) = DeviceGone then
23
            RemoveDevice(D, d)
24
           t \leftarrow GetTask(e)
25
           if t \neq \text{nil then}
                DecrNumTaskReplicas(t)
27
28
           end
       end
       Schedule(T,D,\tau_r)
31 end
```