DEALING WITH VARIABLE OPERATING CONDITIONS IN SYSTEM MODELING

Salvatore Distefano – University of Messina sdistefano@unime.it

Outline

Introduction and Issues
Problem Rationale
Proposed Solution
Case Studies
Ongoing and Future Work

Issues in system modeling

•Higher quality standards, tighter constraints

- Safety critical systems
 - Dependability, performance, sustainability, ...
- Issues on models and causes of systems' disasters are:
 - neglecting the principles of redundancy and dependence
 - considering over-simplistic/approximated models

Multiple-Variable Operating Conditions

- Operating conditions may affect the system/observed quantity behaviour
- The system operating conditions may vary due to:
 - External events: weather, temperature, pressure, electromagnetics, workloads fluctuations, ...
 - Internal events: standby policies, interferences or interdependencies among components, load sharing, ...

What if neglected?

Jan. 28th 1986 - Challenger Space Shuttles disaster:

"... due to rubber O-Rings breaks, ... a design flaw on neglecting the rubber behaviour at low temperature ..."

Feb. 1st 2003 - Columbia Space Shuttle disaster:

"... a breach in the leading edge of the left wing, ... the conflict between a design specification stating that the thermal protection system was not designed ..."

Problem Rationale [RESS09]

- Identify and enumerate the mutually exclusive operating conditions c_i in $C = \{c_i\}$
- c(t):**R**->**C** characterises the condition at t
- For each c_i identify **F**={F_i(t)} the set of $F_i(t)$ in isolation $\forall t \in R, c(t) = c_i$ $c_1 = \text{Mem}, c_2 = \text{Disk}$

Memory

• Assumptions:

i. F(*t*) continuous

ii. $F_i(t)$ continuous and strictly monotonic -> invertible

8

Solution Algorithm [CCPE14]

- 1. State space modelling
 - By the modeller
 - Through high level formalism (PN)
- 2. Markovianisation
 - CPH [TSE11]
- 3. Evaluation
 - Kronecker algebra
 - CTMC solver

Non-Markovian Model Analysis

- Memory management
- Solution approaches
 - Supplementary Variables
 - Renewal theory

S0

S1

• Phase type expansion – Markovianisation

One memory per state (Time) Domain memory

 $\begin{array}{c} & & \\$

Codomain Fitting [IDCS13]

•Associate with each stage a specific codomain value range

12

Critical System Surveillance

Ongoing and Future Work

•Extension of the NMSPN formalism: MDNMSPN

- Queueing Network
 New G/G/x policy with variable x
 - Solution techniques
 - Lumping, symmetry
 - Fitting algorithms
 - Time domain analysis
 - Random variable algebra

- 2 or more variables analysis
 - Continuous
 - 3 or more
 - Time, workloads, temperature

Case Studies

Processor blades

Power domain 2

FDD: Floppy disk drive

Server

.

mi.htt

7 Noden

MCS App Client

17

Bibliography

- S. Distefano, System Dependability and Performances: Techniques, Methodologies and Tools, PhD thesis, University of Messina, January 2006.
- S. Distefano and A. Puliafito, Dependability evaluation using dynamic reliability block diagrams and dynamic fault trees, in IEEE Transaction on Dependable Secure Computing, 2007, in press. Available Online 12 November 2007.
- S. Distefano, M. Scarpa, and A. Puliafito, Modeling distributed computing system reliability with DRBD, in Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06), IEEE Computer Society, Washington, DC, 2006, pp. 106–118.
- S. Distefano, F. Longo, M. Scarpa "QoS Assessment of Mobile Crowdsensing Services" In Journal of Grid Computing, 2015, Springer Netherlands. [doi: http://dx.doi.org/10.1007/s10723-015-9338-7]
- D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa, "Dependability Modelling of Software Defined Net- working", In Computer Networks, 2015, vol. 83, pp. 280–296, ISSN: 1389-1286, Elsevier.
 [doi: http://dx.doi.org/10.1016/j.comnet.2015.03.018]
- D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, "Variable operating conditions in distributed systems: modelling and evaluation", In Concurrency and Computation: Practice and Experience, 2014, John Wiley and Sons Publisher. [doi: http://dx.doi.org/10.1002/cpe.3419]
- S. Distefano, "Dependability Assessment of Critical Systems", In Journal of Ambient Intelligence and Humanized Com- puting, 2015, Springer Publisher. [doi: http://dx.doi.org/10.1007/s12652-015-0272-0]
- D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, "Stochastic Evaluation of QoS in Service-Based Systems", In IEEE Transactions on Parallel and Distributed Systems, Oct. 2013, Vol. 24, No. 10, pp. 2090-2099 IEEE Computer Society. [doi: http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.313]
- D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa, "Workload-Based Software Rejuvenation in Cloud Systems", In IEEE Transactions on Computer, Vol. 62, No. 6, June 2013, pp. 1072-1085 IEEE Computer Society. [doi: http://doi.ieeecomputersociety.org/10.1109/TC.2013.30]